Ca(2+)-calmodulin-dependent protein kinase II plays a major role in halothane-induced dose-dependent relaxation in the skinned pulmonary artery.

نویسندگان

  • Judy Y Su
  • Anhkiet C Vo
چکیده

BACKGROUND Previously, the authors have shown in Ca(2+)-clamped skinned arterial strips that protein kinase C (PKC) plays a role in 3% halothane- or isoflurane-increased force. PKC in the pulmonary artery and Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) in the femoral artery have been implicated in isoflurane-induced relaxation. For this study, the authors used clinical concentrations of halothane to examine the role of PKC and CaMKII in the halothane-induced biphasic effect on contraction in skinned pulmonary arterial strips. METHODS Rabbit pulmonary arterial strips were mounted on force transducers and treated with saponin to make the sarcolemma permeable ("skinning"). Skinned strips were activated by low Ca(2+) (pCa 6.3) buffered with 7 mm EGTA, or the PKC activator phorbol-12,13-dibutyrate (PDBu, 1 microm) until force reached a steady state (control). Halothane (1, 2, and 3%) was administered, and the force was observed at peak and 15 min (test results). Ca(2+) ionophore (A23187, 10 microm) and inhibitors were preincubated in a relaxing solution and present in subsequent contracting solutions. Inhibitors were bisindolylmaleimide and Gö6976 for PKC, and KN-93 and the inhibitor protein (CKIINtide) for CaMKII. RESULTS Halothane (1-3%) dose-dependently caused an initial increase (18-35%) and a subsequent decrease (48-68%) in pCa 6.3-induced force. Bisindolylmaleimide, 3 and 10 microm, completely blocked the increase in force at 2% and 3% halothane, respectively. CKIINtide, 0.1 microm, reduced the force at 3% halothane. The decrease in force at 1% and 2% halothane was partially prevented by 0.01 microm bisindolylmaleimide, and at 1, 2, and 3% halothane by 0.01, 0.1, and 1 microm CKIINtide, respectively. At 3% halothane, the increased force was abolished by A23187. In PDBu-induced force, 3% halothane-induced relaxation was also partially prevented by lower concentrations of KN-93 and CKIINtide. CONCLUSIONS In skinned pulmonary arterial strips, the dose-dependent increase in force by halothane is associated with PKC activation, and that of decrease is associated with CaMKII activation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of PKC in isoflurane-induced biphasic contraction in skinned pulmonary arterial strips.

BACKGROUND Activation or inhibition of protein kinase C (PKC) has been implicated in the anesthetic-induced contraction or relaxation of different types of arteries. In skinned pulmonary arterial strips, the initial halothane-induced contraction has been attributed to PKC activation, but the subsequent relaxation has not. Whether isoflurane has a similar biphasic effect is not known. This study...

متن کامل

Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...

متن کامل

P26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory

Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...

متن کامل

Beta-adrenoceptor-mediated responsiveness of human internal mammary artery

The internal mammary artery (IMA) is currently the preferred conduit for myocardial revascularization. However, pre-operative vasospasm and a hypoperfusion state during maximal exercise may limit its use as a bypass graft. The mechanism of spasm has not been clearly defined. Since β-adrenoceptor activation plays a major role in vasorelaxation, the present study was carried out to investigate th...

متن کامل

Gene Expression Profile of Calcium/Calmodulin-Dependent Protein Kinase IIα in the Rat Hippocampus during Morphine Withdrawal

Introduction: Calcium/calmodulin-dependent protein kinase II (CaMKII) is highly expressed in the hippocampus, which has a pivotal role in reward-related memories and morphine dependence. Methods: In the present study, morphine tolerance was induced in male Wistar rats by 7 days repeated morphine injections once daily, and then gene expression profile of α-isoform of CaMKII (CaMKIIα) in the hipp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Anesthesiology

دوره 97 1  شماره 

صفحات  -

تاریخ انتشار 2002